Ejercicios resueltos de Matemáticas
Bullet (black) RSS icon



  • Estudio de sistemas no homogéneos. Teorema de Rouché 03

    Posted on agosto 28th, 2012 Miralles No comments

     

    Dado el sistema:

     

    Halla m para que:

    a)   No tenga solución.

    b)   Tenga infinitas soluciones.

    c)   Tenga solución única.

    d)   Tenga una única solución en la que x = 3.

     

     

    Solución:

    Matriz ampliada:

     

     

     

    Estudiemos el rango de la matriz de los coeficientes:

     

     

     

    Si m = 1:

     

     

     

    Car (A) = Car (A/B) = 1 < número de incógnitas

    Si m = –1:

     

     

     

     

     Car (A) = 1 y Car (A/B) = 2

     

     

    a)   Si m = –1 el sistema es incompatible, es decir, no tiene solución, ya que el rango o característica de la matriz ampliada es mayor que la característica de la matriz del sistema.

     

    b)   Si m = 1 el sistema es compatible simplemente indeterminado, o sea, tienen infinitas soluciones, pues la característica o rango de la matriz ampliada es igual al de la matriz del sistema,  pero es menor que el número de incógnitas. 

     

    c)   Si m ≠ 1 y m ≠ –1 se cumple que Car (A) = Car (A/B) = 2 = nº de incógnitas y el sistema es compatible determinado por lo que tiene una única solución.

    d)   Sustituyendo x = 3 en ambas ecuaciones tenemos el siguiente sistema:

     

     

     

     

    Para que el sistema tenga una única solución con x = 3, m ha de ser igual –4/3, pues si m = 1, el sistema tiene infinitas soluciones.

     

     

     

    Leave a Reply