Dualidad onda-corpúsculo. Hipótesis de De Broglie 01
Un electrón tiene una longitud de onda de De Broglie de 200 nm. Calcular:
a) Momento lineal del electrón.
b) Energía cinética del electrón.
Dato: h = 6,63·10–34 J s
Solución:
Datos: l = 200 nm; h = 6,63·10–34 J s
a) Aplicando la ecuación de De Broglie en la que se relaciona el momento de una partícula con la longitud de onda asociada:
Dimensionalmente:
[P] = J·s/m = N·m·s/m = kg·(m/s2)·s = kg·m/s
b) Relación entre momento lineal y energía cinética:
Dimensionalmente:
[Ec] = (J·s)2/kg·m2 = N2·m2·s2/kg·m2 = N2·s2/kg =
= N·kg·(m/s2)·s2/kg = N·m = J